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CELL MOTILITY IN TUMOR INVASION
Alan Wells, Douglas Lauffenburger, Timothy Turner

INTRODUCTION

Our overall objective is to understand how dysregulation of cell migration contributes to
tumor cell invasiveness in prostate cancer. A combination of correlative epidemiological studies
and basic experimental investigations demonstrate a role for upregulated EGF receptor (EGFR)
and other receptor signaling of motility in tumor progression. Especially in prostate tumor cells,
EGFR-mediated cell motility has been demonstrated to be critical for tumor invasion. Since
signals from extracellular matrix through integrins and from cell-cell contacts also strongly
influence cell motility, the underlying common biophysical processes and biochemical controls of
motility offer an attractive target for limiting tumor progression.

Our central premise is that prostate tumor cell invasiveness can be inhibited by interfering
with the specific motility-associated calpain activation that governs the critical underlying
biophysical process of de-adhesion. Prior work by ourselves and others has shown that
integrin/matrix binding and growth factor stimulation jointly regulate cell locomotion. These
studies have identified cell/substratum adhesiveness, especially the ability of a cell to detach at
its trailing edge, as a primary governor of cell locomotion. We have recently found that this tail
detachment is regulated by calpain activation. We will employ a set of model prostate tumor cell
lines including the moderately invasive androgen-independent PC3 cell and its highly metastatic
variant PC3M cell, along with a panel of syngeneic androgen-independent DU-145 cells that
vary in invasiveness. We will determine whether targeted disruption of calpain activation and de-
adhesion can block tumor invasiveness.

BODY

The original Statement of Work (Table 1) described a series of tasks to accomplish the two
Objectives proposed and the additional training Objective. We have tackled these Tasks in the
order of greatest yield so that work in areas can progress as systems are being optimized in
others. The main efforts during the first year of this three-year project have been focused on the
prostate tumor cell motility and invasion efforts and developing trainees. The progress during
this first year has put us in good position to accomplish the tasks within the time-frame provided.

Table 1. Original Statement of Work

Work to be performed at University of Pittsburgh (A. Wells Laboratory):

1. determine whether calpain is activated by growth factors and integrins in prostate cancer
cells

2. determine whether calpain is limiting for prostate tumor cell motility on complex surfaces

3. determine whether prostate tumor cell transmigration of extracellular matrices is
dependent on calpain activity _

4. determine whether inhibition of calpain limits tumor invasiveness and metastasis in
murine models of progressive prostate cancer

Work to be performed at MIT (D.A. Lauffenburger Laboratory):

1. determine optimal adhesiveness and high and low adhesiveness surfaces for fibroblast
motility

2. test prostate tumor cell motility on defined adhesiveness surfaces

3. determine whether calpain activation is required for prostate cell motility
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Work to be performed in partnership with Tuskegee (T. Turner Laboratory):

1. trainees will perform prostate cell growth and motility assays at Tuskegee and UPitt
2. trainees will perform in vivo mouse assays at UPitt

Work to be performed at University of Pittsburgh:

Task 1. determine whether calpain is
activated by growth factors and
integrins in prostate cancer cells.
We have begun to tackle this task.
Initial findings using the live cell
BOC assay (calpain-mediated
cleavage scores as blue) to assess
activation of calpain in live cells
demonstrate that EGF induces calpain
in the DU-145 cells, both WT and
Parental (Fig 1). The specificity of
activation is shown by inhibition by
calpain inhibitor I (not shown) and
leupeptin. We do not yet have data

P Control 100uM Lp
WT Control 100uM Lp

on integrin stimulation of calpain in these cells; this should be examined in years 2/3.

Task 2. determine whether calpain is
limiting for prostate tumor cell
motility on complex surfaces. Our
initial data demonstrate that calpain
inhibitor I and leupeptin can limit
DU-145 motility across self-generate
matrix (Fig 2). This suggests that
calpain can be targeted to limit tumor
cell invasion by blocking migration.
During years 2/3 we expect to
examine motility on define complex
matrices.

Task 3. determine whether prostate
tumor cell transmigration of
extracellular matrices is dependent on
calpain activity. The first part of this
task has been completed. In vitro
transmigration of a Matrigel matrix by
both Parental and WT EGFR-
expressing DU-145 cells is blocked by
inhibitors of calpain, CI-I and leupeptin
(not shown) (Fig 3). Furthermore,
antisense downregulation of M-calpain
limits this transmigration, providing
specificity (not shown).

PA migration

None Ci None Ci-
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Task 4. determine whether inhibition of calpain limits tumor invasiveness and metastasis in
murine models of progressive prostate cancer. We have challenged mice with DU-145 prostate
carcinoma tumor xenografts with inhibitors of calpain. Tumor invasiveness was reduced in the
presence of daily injections of the inhibitor leupeptin (Table 1). The differences invasiveness
between treated and mock treated were significant (P < 0.05) by T-test and ANOVA analyses.

WT+HBSS WT+Leupetin Parental+HBSS | Parental+leupeptin
Diaphrggm invasiveness| 5 g6 1.33 1.78 0.72
Diaphragm tumors 14 /14 13/14 14/15 1114

Work to be performed at MIT:

Task 5. determine optimal adhesiveness and
high and low adhesiveness surfaces for
fibroblast motility. This is an ongoing
project that derives from our previous work
on integration of integrin and growth factor
signaling of motility. For EGF-induced
motility, we find that optimal fibronectin
coating occurs at around lug/ml, with 0.3
ug/ml and 3 ug/ml being low and high
adhesiveness, respectively. At these
extremes, motility is reduced to levels on par
with no EGF stimulation (Fig 4). The

50
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optimal adhesive strength of the fibroblasts
to the surface is approximately 0.8 nN, with a
movement of 0.2 nN either direction wiping
out growth factor induced movement (Fig 5).

Task 6. test prostate tumor cell motility on
defined adhesiveness surfaces. During years
2/3 DU-145 cell motility will be tested on
these fibronectin coated surfaces to
determine the biphasic response of adhesion
to motility. This will be tested in the
presence and absence of EGFR inhibitors to
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account for autocrine signaling.

Task 7. determine whether calpain activation is required for prostate cell motility. On the basis
of the above and findings in Task 2, we will pursue this vigorously in years 2/3.

Work to be performed in partnership with Tuskegee:

Task 8. trainees will perform prostate cell growth and motility assays at Tuskegee and UPitt.
Masters students Clayton Yates and Karlyn Bailey have been trained at Tuskegee to perform
these assays with the DU-145 human prostate tumor lines. Clayton Yates has transitioned to




Alan Wells, MD, DMSc
DAMD17-01-1-0093

University of Pittsburgh as a PhD degree student in the Cellular and Molecular Pathology
graduate program. Most of his first year were spent on completing required coursework and
passing the Comprehensive Exam necessary to be accepted to a degree-granting program and
selecting a thesis laboratory (Wells laboratory).

Task 9. trainees will perform in vivo mouse assays at UPitt. During his rotation in the Wells
laboratory (all PhD students at University of Pittsburgh School of Medicine are required to
complete three laboratory rotations prior to selecting a graduate program and thesis laboratory),
Mr. Yates learned the in vivo mouse tumor growth and invasion assays. He will apply these in

years 2/3.

KEY RESEARCH ACCOMPLISHMENTS

EGFR signaling enhances prostate tumor motility

EGFR signaling increases calpain activity in prostate cancer cells

Calpain inhibitors block prostate tumor invasiveness in vitro

Calpain inhibitors block prostate tumor invasiveness in vivo

EGFR signaling enhances fibroblast motility over a narrow range of fibronectin
adhesiveness

One trainnee successfully transitioned from Tuskegee Masters program to a doctoral
program at University of Pittsburgh

Y VVVVYVY

REPORTABLE OUTCOMES
Articles:
A Glading, DA Lauffenburger, A Wells (2002). Cutting to the chase: calpain proteases in cell

motility. Trends in Cell Biology 12, 46-54. (appended)

A Wells, J Kassis, J Solava, T Turner, DA Lauffenburger (2002). Growth factor-induced cell
motility in tumor invasion. Acta Oncologica 41, 124-130. (appended)

Abstracts:
A Mamoune, J Kassis, D Lauffenburger, A Wells (2002) Calpain inhibition reduces prostate
tumor invasion. American Association for Cancer Research (AACR) Annual Meeting, San

Francisco, CA

Clayton C. Yates, Karlyn J. Bailey, Alan Wells and Timothy Turner (2001). The Effects of the
Luteinizing Hormone Releasing Hormone Antagonist, Cetrorelix on the Cell Adhesion Profile of
an Invasive DU-145 Human Prostate Cell Line. Selected Abstract-5" Joint Conference of the
American Association for Cancer Research and the Japanese Cancer Association, Maui, HI

Clayton C. Yates, Karlyn J. Bailey, Alan Wells and Timothy Turner (2001). Cetrorelix, a
Luteinizing Hormone Releasing Hormone Antagonist, Influences the Cell Adhesion Profile of an
Invasive DU-145 Human Prostate Cell Line. Selected Abstract-Keystone Symposium, Tahoe
City, CA

Manuscript in preparation:
A Mamoune, J Kassis, D Lauffenburger, A Wells (2002) Calpain inhibition decreases tumor
invasion of human prostate cancer cells. In preparation for submission

Training:
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C Yates has transitioned from Tuskegee University with a MA in Biology to the PhD program in
Cellular and Molecular Pathology at University of Pittsburgh.

CONCLUSIONS
The initial year of this multiyear award has reached major defined milestones and established the

base for increasing productivity over the life of the award.

Importance/Implications: The Key Accomplishments above firmly demonstrate the validity of

the model of the tumor biology that calpain-mediated deadhesion is a rate-limiting step in tumor
cell motility and invasion. This provide the ‘proof a concept’ that targeting calpain is a rationale
therapeutic option. The implications are clear that calpain inhibitors, currently being developed
for muscle-wasting conditions, may have a role as adjuvant cancer therapy to limit the spread of

prostate carcinoma.

Recommended changes: The results to-date do not cause us to re-evaluate the Task list or overall
thrust of the work. We will proceed with the unfinished Tasks in years 2/3, barring new data that
might accrue.
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Tumor progression to the invasive and metastatic states dramatically enhances the morbidity and mortality of cancer. Rational
therapeutic interventions will only be possible when we understand the molecular mechanisms governing the cell behavior underlying this
transformation. For invasion, a subpopulation of tumor cells must recognize the extracellular matrix barrier, modify the barrier, migrate
through the barrier, and then proliferate in the adjacent but ectopic locale. Prevention of any one of these steps would prevent invasion,
but determining the most sensitively dysregulated step should provide the most promising therapeutic index. In many invasive tumors,
upregulation of active motility is stimulated by growth factor receptor signaling, the EGF receptor being the most frequently implicated.
Two key downstream molecular switches, PLCy and m-calpain, are required for growth factor-induced motility but not basal,
matrix-stimulated motility. Inhibition of either of these enzymes blocks in vitro and in vivo invasion of prostate, breast, and bladder
carcinomas and glioblastomas. These represent novel and potentially selective targets for drug development. Future advances in the

imaging of tumors in animals and ex vivo organ culture systems should provide additional new targets.

Received 20 September 2001
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Tumor invasion into and destruction of adnexa account
for significant morbidity and mortality in a variety of
tumors, particularly glioblastomas and carcinomas of the
prostate, bladder, head and neck, and esophagus. These
primary tumors are accessible for debulking by surgical
and radiological means but local extension beyond the
physiological borders render these approaches impotent or
engender significant adverse effects and poor outcomes in
themselves. Limiting further invasion may yield palliative

- benefit, delay further tissue destruction, or even stabilize

the discase at an advanced but manageable stage. Thus,
the control of invasion per se is an appropriate goal for
cancer treatment, to be employed in conjunction with
other approaches that target tumor cell proliferation.
However, to target this aspect of tumor progression ratio-
nally, greater understanding of the operative molecular
controls is required.

Growth factor receptors originally were linked to tu-
morigenesis, as a number of retroviral oncogenes were
found to derive from peptide growth factors and their

Paper presented at the ‘State of the Art’ Conference on Cancer,
Swedish Cancer Society, Stockholm, Aungust 2001.

© Taylor & Francis 2002. ISSN 0284-186X

receptors; the primary examples were the v-erbB/EGF
receptor and v-sis/PDGF. In the immediate post-proto-
oncogene era, a wide variety of human tumors were found
to overexpress this class of signaling molecules, the epider-
mal growth factor (EGF) receptor (EGFR) being the most
frequently identified (1). However, these early studies in all
likelihood underestimated this relationship since they
targeted gene amplification and steady-state protein levels.
The vast majority of epithelial cells express EGFR while
producing ligands for this receptor, primarily EGF and
TGFo, though these are spatially segregated by cell polar-
ization of receptor to basolateral surfaces and ligand re-
leased at the apical membranes to prevent autocrine
signaling (2, 3). When the epithelium becomes dysplastic
and neoplastic with weakened cell—cell junctions, the seg-
regation is lost and inappropriate autocrine signaling is
enabled (4). As receptors and ligands are actively internal-
ized and degraded upon binding and receptor activation,
misleadingly low receptor protein levels may be found at
steady state for highly active signaling loops (5). This
situation was the reason for earlier controversies in
prostate cancers in which various reports failed repro-
ducibly to detect EGFR; however, examination of mRNA

Acta Oncologica
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species demonstrated high levels of both receptor and
ligands (6). Thus autocrine signaling through the EGF
receptor system is likely a common occurrence in
carcinomas.

The prevalence of upregulated EGFR signaling in tu-
mors did not initially provide insight into how this might
contribute to tumor development. Upon closer examina-
tion of the clinical data, a number of studies demonstrated
that EGFR overexpression correlated not with prolifera-
tion and initial tumorigenesis but, rather, with tumor
progression to invasion. Sentinel examples include
glioblastomas, in which half or more of the invasive tu-
mors present upregulated EGFR compared to almost none
of the non-invasive gliomas (7, 8). In one study of bladder
carcinomas, most (21/24) of the invasive but few of the
superficial (7/24) tumors overexpressed EGFR (9). High
levels of EGFR were visualized in the regions of the
tumors that were actively invading the underlying muscu-
lature while the superficial aspects of the tumors expressed
lower, physiological levels of EGFR (10). In a series of
gastric carcinomas, approximately one-third of the inva-
sive tumors (38/130) overexpressed EGFR, whereas none
of the early superficial tumors (0/26) similarly upregulated
this system (11). Thus, EGFR signaling was hypothesized
to contribute to the invasive phenotype.

To simplify matters thoroughly, in order to invade, a
subpopulation of tumor cells must acquire the abilities to
(i) recognize the extracellular matrix (ECM) barrier, (ii)
modify the ECM barrier, including proteolytic degrada-
tion, (iii) actively migrate through the matrix space, and
(iv) proliferate in the ectopic but adjacent site (12). It is
not required that all of these are upregulated during tumor
progression, since a basal level of the first three occurs in
localized tumors and even in normal tissue. Thus, while
any of these properties could be, and have been targeted to
block invasion, determination of one that might be most
problematically dysregulated to drive invasion could
provide insight regarding which might provide the greatest
therapeutic index as a target.

CELL-MATRIX INTERACTIONS

Paradoxically, the initial step of altered adhesion is both
the most elucidated and least dissected to date. One reason
for this is that the action of recognizing the barrier matrix
is not passive but induces changes in cell behavior, often
inducing the other properties needed for invasion. A sec-
ond reason is that the effects of matrix may be non-
monotonic or -monophasic for even a singular property,
so that prediction of even the qualitative effect of altering
a recognition effect is difficult. A third reason is that the
cell-matrix interaction is highly dynamic. In poorly differ-
entiated and invasive carcinomas the matrix changes, in-
cluding upregulation of fetal and wound response proteins
such as tenascin-C and laminin-5 (13, 14). The re-emer-
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gence of these proteins provides new sites for interactions
and with different integrins and other adhesion receptors.
For all these reasons, cell-matrix interactions in motility
and invasion are difficult to understand even qualitatively.

Even the same cellular receptors for the matrix qualita-
tively alter their behavior with tumor progression. One
well-documented example is the ¢6p4 integrin, which nor-
mally functions as an anchor to the substratum in well-dif-
ferentiated epithelia (15). In invasive carcinoma cells, 2654
relocalizes and concentrates at the leading edge of the cells.
These receptors now drive motility forward, even signaling
from laminin-5, which is soluble, rather than matrix em-
bedded (16). Thus, this integrin changes from primarily an
anchoring function to one of active signaling. Further-
more, even the same integrin-ligand pair function in quali-
tatively and quantitatively distinct ways depending on the
geometry of ligation. It is well established that cell shape
as dictated by the adhesion footprint impacts on cell
function (17) and that the extent of integrin clustering
dictates which signals are induced (17). We have shown
that cells can adhere to individual integrin ligands, but
only microclusters will support both integrin-mediated
haptokinesis and growth factor-induced chemokinesis (18).

The next step in the invasion program is to alter the
matrix to allow passage. The major aspect of this process
involves extracellular proteases (19). Inhibitors of metallo-
proteinases (MMP) block tumor progression but the un-
derlying mechanism for this is undergoing reappraisal (20).
It is unlikely to be simply matrix degradation, as non-inva-
sive tumor cells and even normal cells express high levels
of many MMPs; moreover, cell migration is not necessar-
ily enhanced by matrix breakdown since adhesive traction
can be lost. Rather, the membrane-tethered MMP (intrin-
sic transmembrane MT-MMP and secreted MMP bound
to cell surface receptors) might function itself as a motility-
promoting adhesion receptor at the tip of an invadipodia
(21, 22), or the MMP might function to create signals for
cell motility either by cleaving autocrine growth factors
(23), releasing sequestered growth factors from the matrix,
or uncovering cryptic signals in matrix components (24,
25) (Fig. 1).

This last possibility is an especially exciting new avenue.
It had earlier been reported that matrix components might
activate receptors that are members of the family of
growth factor receptors with intrinsic tyrosine kinase activ-
ity (RPTK). The most striking example of this is the
discoidin domain receptors that bind fibrillar collagen (26,
27). Another matrix component, decorin, has been shown
to activate EGFR (28). This concept potentially has been
extended recently with the report that some of the EGF-
like repeats in the onco-fetal and wound repair protein
tenascin-C can signal through the EGF receptor (25).
These monomers are of very low affinity with a Kd in
excess of 10 uM. However, this protein is produced as a
hexamer with 84 repeats clustered centrally, enabling mul-
tivalent binding (14); When expressed multivalent on
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Fig. 1. Metalloproteinases (MMP) and other secreted proteases
may promote motility by a number of avenues. The MMP were
first hypothesized to digest the matrix (lines) at the front of the
tumor edge to allow passage; this may be due to secreted and
soluble MMP, secreted but receptor-bound MMP, or the mem-
brane tethered MMP (MTMMP). Alternatively, MMP may signal
through cell surface receptors (lightning bolt), liberate membrane
tethered pro-growth factors (pGF), digest invasion inhibitors (I)
in the matrix, liberate matrix-sequestered growth factors (GF), or
uncover matrikines (MK/GF) that signal through members of the
growth factor receptor superfamily.

beads the individual EGF-like repeats can form stable
complexes with EGFR. This type of matricrine signaling
through growth factor receptors greatly expands the regu-
latory functions of matrix components. However, this
complexity of simultaneous adhesion, degradation and
signaling confound clear analyses of the contribution of
this stage to tumor invasion.

CELL MOTILITY

Cell motility should be central to tumor invasion since to
grow in the ectopic site the cells must transmigrate a
physiological barrier, ECM and, in the case of prostate
and bladder carcinoma, enveloping muscular layer. How-
ever, in order directly to address this hypothesis, regula-
tory molecules need to be identified that are specific to the
process of cell motility. Thus, inhibition of these signaling
pathways should not affect other required cell properties
such as proliferation.

Motility can be considered as a cyclic series of the
biophysical processes of extension, front adhesion, tran-
scellular contraction and rear release (29). All of this is
preceded by reorganization of the actin cytoskeleton that
enables normally cuboidal epithelial cells to assume the
asymmetric fusiform shape that enables active locomotion
(30). These steps are likely controlled by external signals
acting through separable signaling pathways. Over the past
decade, a large cohort of investigators has begun to iden-
tify key switches for motility in response to adhesion and
growth factor signals (31) (Fig. 2). Growth factor-induced
motility differs from basal adhesion-mediated motility not
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Fig. 2. Biophysical dissection of cell migration highlights key
molecular switches. Cell movement can be considered as a series
of distinct but concerted events, each of which involves separate
signaling. As illustrated, each of these processes involves a unique
set of effector molecules and signaling pathways. Required molec-

-~ ular switches for adhesion receptor-mediated motility are shown

in block and those for growth factor receptor-mediated motility in
italics, though the signaling separation may overlap somewhat.
Taken with permission from Kassis et al. (57).

only quantitatively in generating a greatly enhanced rate
but also in the fact that it is superimposed upon haptoki-
nesis; while one might speculate that adhesion-signaled
motility processes might be required (18), this has not yet
been proven. Such a situation suggests that signaling path-
ways to growth factor-induced motility may have distinct
switches, providing for a therapeutic window.

This has been borne out by our extirpation of two
signaling pathways that appear highly selective for growth
factor-induced motility. Briefly, activation of PLCy is re-
quired for motility signaled by EGFR (32), PDGFR (33)
and IGF-1R (34) but not integrins (35). PLCy actuates
motility by hydrolyzing PIP2 to mobilize gelsolin to sever
and cap the actin cytoskeleton in the immediate submem-
brane region (36). This allows for the cytoskeletal reorga-
nization necessary for cell polarization and continuous
cytoskeletal plasticity required for the forward flow of the
cell (37). Of importance for parsing events, PLCy inhibi-
tion actually leads to increased proliferation not inhibition
of growth by shunting the EGFR signaling towards that
competitive cell response (38). Thus, PLCy can be targeted
as a motility-selective signal; in such a case other agents
and/or approaches would need to be utilized to limit
tumor cell growth.

A second key regulatory switch selective for growth
factor-induced motility is the m-calpain isoform of this
ubiquitous intracellular limited protease (39). Activation of
this molecule is required for the lessened adhesion needed
during tail retraction (40). The other ubiquitous isoform,
p-calpain, appears to be required during haptokinesis (41)
and chemokine-driven motility (Satish et al. unpublished
study, 2001). Currently, molecular inhibitors can differen-
tially target these isoforms. Cell motility can be inhibited
by pharmacological agents, such as ALLN, at levels that
do not abrogate growth factor-induced proliferation.
Thus, two switches that are selective for growth factor-in-
duced motility provide targets to limit just this type of cell
movement. This would minimize any deleterious side ef-
fects, since the integrin-mediated slow motility appears to
be fully sufficient for homeostasis.
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Fig. 3. Tumor progression is a multicellular field event involving matrix, and stromal and other support cells. The emerging concept of
tumor multicellularity posits bi-directional effects of the neoplastic cells with the stromal cells, extracellular matrix, vasculature, and even
immune response cells. Taken with permission from Radisky et al. (48).

With these tools, we could ask, at least for therapeutic
targeting purposes, whether tumor invasion could be con-
sidered effectively as a disease of dysregulated EGFR-in-
duced motility. In human prostate carcinoma, cell lines,
overexpression of a motility-inducing EGFR construct but
not a fully mitogenic but non-motile construct resulted in
increased cell invasiveness in vitro and in vivo (42, 43).
This invasiveness was due to autocrine EGFR signaling as
inhibiting EGFR signaling with a selective pharmacologi-
cal agent blocked the invasiveness of prostate, breast and
bladder carcinomas (44). Pharmacological and molecular
inhibitors of PLCy prevented invasion of these cells into
the diaphragm or other abdominal organisms when these
tumor cells were grown intraperitoneally in athymic mice
(43, 45). Such inhibitors also blocked invasion of glioblas-
toma cells into normal brain tissue in ex vivo model
systems (46). This latter tumor type highlights another
advantage of targeting the convergent molecular switches
rather than the specific triggering receptor since it is an
open question whether glioblastomas are driven to invade
by EGFR, PDGFR, IGF-1R or other growth factor recep-
tors. The glioblastoma cells’ motility response to all three

factors was similar prevented by inhibiting PLC. Impor-
tantly, initial studies demonstrated that inhibition of cal-
pain also blocks tumor invasiveness in vitro. Thus, motility
per se appears to be the key target rather than any
particular molecule.

INVASIVE GROWTH

The definition of invasiveness is the ability of the tumor to
grow outside the physiological confines. A number of
threads of evidence suggest that this adjacent ectopic
growth is likely to be somewhat distinct and probably less
stringent than the growth needs for metastatic growth (47).
In the main, it has become evident over the past few years
that tumorigenesis and progression is a cell field event
requiring changes not only in the cancer cell but also in the
stromal cells and matrix (48, 49) (Fig. 3). Since invasive
growth is contiguous with the orthotopic ‘soil’, it is con-
ceivable that not only do the carcinoma cells migrate to
the ectopic site but also the supporting stromal cells and
matrix.

Still, growth outside the matrix barrier is critical, and
may involve the same peptide factors that induce ortho-
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topic growth (3, 50). These may be the same factors that
also promote cell motility. Prostate cancer cell growth
relies upon autocrine EGFR signaling, since blocking anti-
bodies limit cell proliferation (45, 51). However, this is
distinct from motility signaling, since inhibition of PLC
does not limit cell proliferation. Such an autocrine EGFR
signaling loop is also required for proliferation of a num-
ber of other tumor types such as breast cancer (52). One
interesting hypothesis in’ this regard is that spatially re-
stricted autocrine loops provide for physiologically appro-
priate cell homeostatic signaling, whereas loss of this
restriction generates signals leading to motility (discussed
above) and/or proliferation in inappropriate contexts (4).
Thus, in this case at least, the same set of signaling
elements promotes different cell phenotypes to accomplish
two responses needed at distinct stages of invasion.

OPPORTUNITIES AND CHALLENGES

These studies provide a promising start to understanding
tumor invasion as the first step towards defining therapies.
We have focused on cell motility as a rate-limiting step
since it is most clearly distinguishable, whereas the recog-
nition and remodeling steps are intertwined also with
motility. It must be emphasized that, at least in experimen-
tal models, inhibition of adhesion or extracellular
proteases does block invasion (19). However, as growth
factor-induced cell motility appears to be a re-creation of
fetal and repair biology and distinct from homeostatic and
immune response-related motility mediated by adhesion
receptors, there seems to be the greatest opportunity for a
large therapeutic index.

Much more needs to be understood before one can
rationally prevent invasion and turn aggressive tumors
into indolent life-long conditions. Advances are likely to
be driven by findings that (A) utilize proteomics and
post-proteomics to determine the activation status and
location of key regulatory switches, (B) define the interplay
between adhesion receptors and growth factor receptors in
cell motility, and (C) parse the contributions of the non-
carcinoma cells in tumor invasion.

These insights that may lead us forward to the next level
of understanding will build on the technical advances in
imaging and ex vivo organ systems. Tumor cell behavior
can now be visualized in live, splayed animals (53-55).
Already, such techniques have shown that progressive
growth at the ectopic site appears to be the rate-limiting
step in metastasis and have also shown active movement of
metastatic cells towards blood vessels. Combining these
initial forays with multicolored tagging of specific proteins
should prove powerful in delineating key molecular func-
tions. However, these model systems are limited by the
short time span of observation in h and the difficulty in
manipulating the tumors and conditions. As an intermedi-
ary step, ex vivo model systems will be key in studying
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invasion and metastatic seeding. An exciting possibility is a
month-long viable liver system that can be visualized
continually during this extended period (56). This is partic-
ularly germane to ectopic growth studies as the liver is a
common site of metastatic growth.

Unfortunately, one key stumbling block that is inhibit-
ing further developments in this field is the lack of a way
to study invasion inhibition in people, in clinical trials.
Currently, the accepted parameters for Phase II/III trials
are geared towards tumor growth and thus are not appli-
cable to therapies that limit progression without a con-
comitant effect on tumor size. Until clinical oncologists
contrive means to determine effectiveness of invasion and
metastasis inhibitors, we will not be able to apply this
burgeoning knowledge to the benefit of our patients.
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Cutting to the chase: calpain
proteases in cell motility

Angela Glading, Douglas A. Lauffenburger and Alan Wells

Calpains are a large family of intracellular proteases whose precise and limited
cleavage of specific proteins might be an integral regulatory aspect of signaling
pathways. This intriguing mechanism for transducing biochemical and
biophysical information from the external milieu seems to operate during cell
motility. The two first described and ubiquitous isoforms, p-calpain and
M-calpain, have been implicated in enabling cell spreading by modifying
adhesion sites and in promoting locomotion of adherent cells by facilitating
rear-end detachment. Recent elucidation of the molecular structure of calpain
opens the door for understanding how these pluripotential signal proteins are
regulated to help govern migration. Armed with this knowledge, the precise
roles of calpains in inflammation, wound repair and tumor progression can be
ascertained and offer novel therapeutic targets.

Angela Glading

Douglas A. Lauffenburger*
Alan Welis*

Dept of Pathology,
University of Pittsburgh
and Pittsburgh VAMC,
Pittsburgh, PA 15261,
USA.

*Division of
Bioengineering &
Environmental Health and
Center for Cancer
Research, Massachusetts
Institute of Technology,
Cambridge, MA 02139,
USA.

*e-mail:
wellsa@msx.upmc.edu

Our understanding of the calpain family of
intracellular cysteine proteases has benefited from
intensive characterization in the four decades since
their discovery in 1964 [1]. Owing to the limitations of
investigative tools, earlier work focused on in vitro
regulation and activities of these proteases, primarily
the two ubiquitous isoforms p-calpain (calpain I) and
M-calpain (calpain IT) {2]. Determination of the
domain and molecular structures of calpains has
provided both mechanistic bases for understanding
calpain activation and a platform for deciphering
their in vivo modulation.

Inthe past 50 years or so, interest has grown in
connecting calpain function to physiology and
pathology, and recent studies have focused on its
involvement in tissue/organ-level processes such as
injury-mediated apoptosis in stroke and ischemia [3],
protein degradation in muscular dystrophies [4] and
susceptibility for non-insulin-dependent diabetes
mellitus [5]. Here, we consider calpain function in an
important area of cell biology — that of cell adhesion
and migration. This area, of course, has relevance to
pathophysiological issues in wound healing, cancer
and the immune and inflammatory responses.

Structural considerations

The 13 distinct mammalian calpain gene products
identified to date each comprise a large subunit, some
of which complex with a single 30-kDa small subunit
[6). Each of the 13 gene products differs in the length
of its N-terminal sequence, regulatory domain
structures and presence of Ca*-binding domains;
however, all contain the conserved active site. Of the
10 calpains that have been studied at the protein
level, the expression patterns vary between tissues,
with most of the calpains being relatively cell-type
specific. Two ubiquitous calpains, p-calpain and

M-calpain, which have been implicated in adhesion
and migration phenomena, have the benefit of being
the best characterized owing to their primacy of
discovery. These two isoforms were named according
to their relative requirement for Ca?* in vitro, with
p-calpain requiring micromolar concentrations and
M-calpain requiring near millimolar levels of Ca%* to
elicit proteolytic activity.

As shown in Fig. 1, the calpain molecule can be
divided into five domains, initially conjectured from
protein structure/function studies and more recently
supported by the crystal structure [7,8]. Domain I
contains a short 19-residue N-terminal domain that is
cleaved intermolecularly (i.e. by autolysis) either
during or following activation. The catalytic domain is
divided into two parts, with the active-site cleft
formed between them. Domain III is a putative
regulatory domain that has been shown to contain
sites for phosphorylation (H. Shiraha, pers.
commun.) and a phospholipid-binding domain [9].
The fourth domain contains four EF-hand
Ca?*-binding domains and is thought to be
primarily responsible for the Ca% requirement
shown by calpain.

The elucidation of the crystal structure of
M-calpain has shed considerable light on the
activation and regulation of calpain. Unlike the
papain protease family, which is likely to be the
evolutionary precursor of the calpains, the
N-terminal domain does not lie in the active site and
does not act as a pro-domain. This supports earlier
work demonstrating that autolysis of the N-terminus
is not required for activation [10,11]. By contrast, the
N-terminal domain in the inactive enzyme is
contained within a groove in close proximity to the
Ca2+-binding domains of both the large and small
subunits. The most intriguing aspect of the structure
is the active site itself. In the inactive state, the
catalytic residues (Cys105, His262, Asn286) are
misaligned and too far apart to form a catalytic
center [8].

Some conformational change must occur to close
and align the active site. Therefore, regulatory
events such as Ca?* binding, phospholipid binding,
intramolecular cleavage or phosphorylation must
effect this alignment. In vitro, Ca2+-ion occupancy of
each half of the active cleft results in such a change
and in subsequent cross-bridging that €ixes’the cleft
in an active state. In addition, release of physical
constraints imposed by the three-dimensional
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Table 1. Select calpain targets — proteins involved in motility and adhesion

Target Cellular locale In vivo® In vitro Refs
EGFR Plasma membrane Yes Yes [501
Talin Adhesion complex Yes Yes [20,21,51-53]
Ezrin Adhesion complex Yes Yes [31,54]
Paxillin Adhesion complex Yes - [65]
Vinculin Adhesion complex Yes - [56]
Spectrin Adhesion complex - Yes [57,58]
Filamin Adhesion complex - Yes [59]
a-Actinin Adhesion complex Yes No [60,61]
Integrin-p1 Adhesion complex Yes Yes [62]
Integrin-B3 Adhesion complex Yes Yes [17,62]
Integrin-$4 Adhesion complex Yes - [63]
Tau Pan-cellular Yes Yes [64,65]
MAP2 Pan-cellutar - Yes [66,671
FAK Adhesion complex Yes Yes [55,68,69]
pp60Src Adhesion complex Yes - [26]
PKC Pan-cellutar Yes Yes [56,70]
RhoA Pan-cellular Yes - -
MLCK Pan-cellular - Yes [71,72]
2Cell culture.

bJ.E. Fox, pers. commun.

Abbreviations: EGFR, epidermal growth factor receptor; FAK, focal adhesion kinase; MAP2,
microtubule-associated protein 2; MLCK, myosin light chain kinase; PKC, protein kinase C.
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Fig. 1. (a) Ribbon diagram of the crystal structure of human M-calpain
inthe absence of Ca?*. Adapted, with permission, from Strobl et al. [7].
Important regulatory sites discussed in the text are noted with arrows.
(b) Schematic representation of the domain structure of the large
subunit of M-calpain and p-calpain (top), with domains color-coded to
correspond to the ribbon diagram. The N-terminal domain lis cleaved
by intermolecular autolysis before or during activation. The active site
is contained within two catalytic domains (lla and lb). The putative
regulatory domain Il contains sites for phosphorylation and
phospholipid binding and is followed by a loose finker region, also
called the transducer arm. Domain IV contains four EF-hand domains
that might contribute to the apparent calcium dependency of calpain
and to forming a complex with the small subunit {bottom). The small
subunit comprises an N-terminus that is susceptible to proteolysis, a
glycine-rich domain and a Ca2*-binding domain highly homologous to
domain IV of the large subunit.

structure would also be required (Z. Jia, pers.
commun.). How this activating intramolecular
reorganization is effected ir vivo is a major
challenge in determining the physiological roles
of calpains.

Activation and regulation

Multiple, potentially alternative or complementary
mechanisms of activation and regulation have been
suggested for the ubiquitous calpain molecules.
Extrapolating from in vitro findings, it was
presumed at first that calpains are activated by
intracellular Ca?+ fluxes. Although some indication
that Ca2*levels high enough for p-calpain activation
could be achieved in highly localized Ca?* puffs (up to
~600 nM in non-excitable cells) or sparks (excitable
cells) [12], these Ca?*-release events have not
generally been observed during normal cell
homeostasis and therefore might have limited
involvement in cell signaling. In addition, the in vitro
Ca?*levels required for M-calpain activation appear
to be generally unattainable under physiological
conditions, with the exception of events related to cell
death [13,14]. Therefore, several mechanisms have
been suggested either to lower the Ca? requirement
or to substitute for Ca2+ altogether. These include
phospholipid binding, autolysis, release of calpain
from its inhibitor calpastatin, binding of activator
proteins and phosphorylation (Box 1). These studies
have mainly focused on calpain behavior in vitro,
which could well be significantly different from its
behavior and function in vivo.

Whatever mechanism(s) is/are used to effectively
reconstitute the active site and create an active
molecule, one must not lose sight of the fact that the
upstream signals controlling this activation, and the
downstream targets of calpain activity, are just as
important in understanding the physiological role(s)
of this enigmatic protease. Furthermore, the modes
for activating calpains might vary not only between
isoforms, such as Ca2* fluxes operative for u- but not
M-calpain (see below), but might also depend on
subcellular localization and/or cell response —as the
ubiquitous isoforms are found throughout the cell,
including in the nucleus, and have been implicated in
responses as diverse as proliferation and migration.




Calpain as a signal transducer for cell migration
Calpain activity has been shown to be crucial for a
diverse spectrum of cellular responses, at least some
of which are mutually exclusive [15]. These include
apoptosis, proliferation, protein turnover and, most
recently, cell adhesion and motility. Although the
specificity of some of these responses is considered to
be dictated by the specific calpain isoforms, most can
be accomplished by the two ubiquitous isoforms,
p- and M-calpain. Further confounding the simple
assignment of cell response to molecular effectoris
the fact that both of these isoforms are present in
multiple subcellular locations. Thus, in dissecting
the role of calpain-mediated proteolysis in cell
adhesion and motility, one has to be cognizant of
the spatial and probably the temporal nature of
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cytosolic proteins. M-calpain has been observed to
colocalize with talin in focal adhesions in some cell
types [16]; however, this has not been seen in all

cell types [17]. This suggests that the targets
important for adhesion and motility are probably only
a subset of the total number of calpain targets

(see Table 1). Even though one can propose plausible
and testable models for localizing calpain activation
to the internal face of adhesion complexes, this still
leaves a large number of attractive targets, including
talin, paxillin, o-actinin, ezrin, focal adhesion kinase
(FAK) and the cytosolic tails of f1 and $3 integrins.
All these molecules are present in focal adhesions
[18]. Accordingly, it is conceivable that any

given target might be sufficient, but not necessary,
for the weakening of integrin linkages to

calpain activation.

Spatial constraints on calpain activation are even
more crucial when one considers through what
mechanism calpain modulates cell adhesion and
motility. Although this mechanism is still unclear, all
evidence supports a proteolytic event. Calpain has
many target molecules in vivo, including many
proteins found in adhesion complexes —but also other

Box 1. Proposed activation mechanisms for calpains

the substratum that is rate limiting for tail
detachment [19].

Elucidation of the key calpain target(s), and of the
subsequent mechanism for the regulated disassembly
of adhesion sites, is likely to uncover novel modes of
signaling and molecular regulation. Further
complicating the picture is the observation that
calpain proteolyses at limited sites in each molecule,

Phospholipid binding

Binding of phospholipids decreases the Ca? requirement for
calpain activation in vitro [a,b]. Furthermore, calpain translocates
to the plasma membrane in the presence of Ca?, where it
associates with phosphatidylinositol (4,5)-bisphosphate [c]. As
there is a putative phospholipid-binding domain in the regulatory
domain of calpain [d], this needs further investigation. This
domain is particularly relevant to the effects on motility and
adhesion as calpain functions at the inner face of the plasma
membrane during these cell responses (see below).

Autolysis

Immediately upon calpain activation, autolyzed fragments of

76 and 78 kDa appear, and it is because of this that autolysis has
been the most investigated mechanism suggested to replace

the need for high Ca?* levels. To yield these fragments, calpain
cleaves, respectively, 18 and 26 amino acids from the N-terminus
of its large subunit. The shortened subunit possesses catalytic
activity [e] and requires a lower Ca?* concentration for activation
than the intact one [f,g]. Nevertheless, the Ca?* requirement for
autolysis, even in the presence of phospholipids, is much greater
than physiological levels, begging the question of whether Ca?*is
required for autolysis in vivo. Earlier studies showed that the intact
large subunit [h-k] and a mutantincapable of autolysis [I] both
possess catalytic activity. Thus, the removal of these 18/26 amino
acids might make the activation irreversible or generate a signal
for attenuative degradation.

Escape from endogenous inhibition

All cells express an endogenous inhibitor of calpains - calpastatin -
which binds to and inactivates calpains through each of its four
repetitive inhibitory domains. However, although release of calpain
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from calpastatin correlates with activity, it is not sufficient for
activation. Furthermore, calpastatin is neither always presentin
excess molar levels nor always colocalizes with calpain. Moreover,
Ca?+fluxes enhance calpastatininhibition of calpains, suggesting
that calpastatin might function to attenuate activated calpains rather
than tonically prevent calpain activity [m,n]. Despite the conflicting
evidence of physiological relevance, overexpression of this
molecule can be employed to prevent calpain activation.

Protein coactivators

Ithas been proposed that certain protein-protein interactions alter
calpain activity. Although it has been suggested that dissociation
of the large subunits from the small subunitis an activation
mechanism, this remains controversial. Select proteins copurify
with active calpains, which increases the autolysis of calpains

in vitro. Possible candidates for these copurified proteins have
been found in some cell types. In rat skeletal muscle, bovine and
rat brain, activator proteins for p-calpain were found that
increased autolysis and lowered the Ca?* requirement [o-r].

An activator for M-calpain, found in rat skeletal muscle, has been
identified as acyl-CoA-binding protein [s]. Unfortunately, the
association and activation of calpain in vivo by these proteins has
not been demonstrated, and the mechanism by which they could
activate calpains is unclear.

Phosphorylation

Most recently, old standbys of signal transduction - phosphorylation
cascades - have been proposed as being involved in activating
and attenuating M-calpain. Early reports were contradictory in that
calpains were shown to be phosphorylated in vitrobut not in vivo,
as determined by autoradiography [t,u]. However, with
technological advances, both M- and p-calpain have been shown




resulting in long-lived specific fragments. That these
fragments might be activated or serve as dominant-
negatives rather than simply being removed by
degradation is strongly suggested by the observation
that the talin calpain cleavage product has a higher
affinity for binding to 3 integrin cytoplasmic tails
than intact talin and subsequently regulates integrin
activation [20,21]. Calpain can therefore act as a
signaling molecule, but it elicits different effects
depending on which target molecules are cleaved and
perhaps on the relative levels of their cleavage.
Indeed, when approaching the subject of the
involvement of calpain in cell adhesion and motility, it
is necessary to keep in mind that the activity of
calpain noted (or, experimentally, the inhibition of
calpain activity) will probably indicate cleavage of
physiologically relevant calpain targets; however,
perhaps the target will vary or will involve different
relative amounts.

Cell adhesion

Initial studies of possible roles for calpain focused on
cell adhesion in platelets, an interesting system in
which calpain clearly plays a role in secretion,
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adhesion and aggregation. Inhibition of calpain using
an overexpressed form of calpastatin prevents
thrombin-stimulated a-granule secretion, platelet
aggregation and cell spreading on glass surfaces [22].
Platelets have a unique advantage over other cell
types for studying calpain function in that they
predominantly express p-calpain, having negligible
levels of M-calpain [15]. Therefore, molecular
inhibition of p-calpain (for example, with
dominant-negative p-calpain) is sufficient to
downregulate all detectable calpain activity, and
antibodies to the autolyzed form can yield meaningful
results. It is necessary to note, however, that,
although calpain activity is no longer detectable using
traditional techniques, platelet function in a mouse
p-calpain knockout model presents surprisingly
minor deficits [23].

In this context, calpain was shown to be part of
the integrin signal-transduction apparatus. Calpain
is activated following signaling across the platelet
integrins ofIbB3. Integrin binding to fibrinogen in
the presence of thrombin activates calpain, with the
subsequent appearance of autolyzed pi-calpain and
calpain cleavage products of talin, a protein that

to be phosphorylated in vivo (J.Y. Cong, V.F Thompson and D.E.
Goll, unpublished). Under unstimulated conditions, there are three
sites each of phosphotyrosine, phosphoserine and
phosphothreonine phosphorylation, with calpains isolated froma
variety of tissues demonstrating varied substoichiometric
phosphorylation. We also have reported that growth factors
activate M-calpain downstream of ERK/MAP kinase [v] and have
now found evidence suggesting that this occurs at Ser50. This is
intriguing as muscle-specific calpain Il - which does not require
increased Ca?* [w] - presents a glutamic acid residue at this site.
Further support for phosphorylation as a modulatory mechanism
is offered by our finding that cAMP-dependent protein kinase A
phosphorylation of Ser369/Thr370 in M-calpain inhibits calpain
activity by rigidifying the structure in an open, inactivating
conformation (H. Shiraha, A. Golding, Z. Jia, J. Chou and A. Wells,
unpublished). All these data suggest that a complex pattern

of phosphorylation might regulate M-calpain activation and
inactivation.
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Fig. 2. Possible molecular interactions in a spreading cell. Spreading cells initially exhibit formation
of newly defined integrin-containing clusters, which contain calpain and cleaved talin, spectrin and $3
integrin (shown in cell center for clarity, these early adhesions are actually observed at the cell
periphery). Early activation of the Rac GTPase leads to formation of focal clusters and laterto
Rho-mediated formation of new focal adhesions and stress fibers {actin bundles). These later-formed
structures do not contain calpain or calpain cleavage products as seen in bovine aortic endothelial
cells[17].

links integrins to the cytoskeleton. This activation is
inhibited by addition of the integrin competitive
inhibitor peptide RGDS (single-letter amino acid
code) [24,25] and by monoclonal antibodies to

the olIbp3 integrin [24]. These studies also
demonstrated an integrin-dependent translocation of
calpain to the peri-plasma membrane space [24],
suggesting that integrin-mediated signals target
calpain to focal adhesions, where many calpain
substrates are located. Calpain associates with focal
adhesion proteins in platelets [24], regulates the
attachment of oIIbP3 to the cytoskeleton and relaxes
the retraction of fibrin clots [26]. The mechanisms of
these actions are unclear. Activation of calpain by
both thrombin and the Ca2*ionophore A23187
increased the proteolysis by calpain of pp60¢s and
phosphotyrosine phosphatase-1B, which then
dissociated from the cytoskeleton and became
inactive. This correlated with the inhibition of
fibrin-clot retraction observed in aggregated
platelets in the presence of Ca?*.

Calpain inhibition blocked cleavage of the
actin-binding protein talin, indicating that talinis a
calpain substrate, whereas calpain activation caused
the movement of both cleaved talin and integrin
olIbB3 from the Triton-X-100-insoluble fraction
(cytoskeleton) to the Triton-X-100-soluble fraction
(cytosol) [26]. Calpain therefore functions asa
signaling molecule in platelets, regulating the
cellular response of thrombin-stimulated aggregation
and clot formation.

Cell spreading

Cell spreading is a complicated phenomenon that
requires active remodeling of adhesion sites to enable
cells to extend processes subsequent to attachment
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(Fig. 2). In its simplest form, it might be considered
similar to platelet aggregation driven by integrin
activation. It is also considered somewhat similar to
the process of forward protrusion during active cell
locomotion. In bovine aortic endothelial cells, calpain
is required for cell spreading and affects processes
such as adhesion induced by the GTPase Rac,
promoting extension and the requisite remodeling of
cell adhesions to enable further extension [17,27].
Inhibition of calpain by calpeptin or the compound
MDL28170 in cells plated on fibronectin caused a
marked reduction in cell spreading and focal adhesion
formation, without affecting initial attachment.

Cells that were allowed to spread and then exposed to
cell-permeant calpain inhibitors became rounded and
lost focal adhesions and stress fibers. The observation
that spreading was specifically dependent on the
activity of p-calpain was reinforced by the observation
that overexpression of p-calpain led to overspread
cells with excessive focal complexes, focal adhesions
and stress fibers. Cells that were transfected with a
dominant-negative p-calpain, in which the active

site histidine residue was mutated to alanine,
became rounded and lost stress fibers and actin
networks [27].

Calpain acting to enable assembly of cell adhesions
required for attachment is also found in T cells, where
integrin ligation activates calpain to promote integrin
diffusion, formation of focal complexes and, ultimately,
cell spreading [28,29]. Although the molecular signals
that activate calpain in these processes are unknown,
specific interventions found that this integrin-based
spreading was mediated by p-calpain.

Because focal adhesion and stress-fiber formation
are processes known to be dependent on the Rho
family of GTPases, calpain has been postulated to
regulate these proteins. Calpain could well be an
upstream signaler of Rac and Rho activation as
expression of active Rac or Rho constructs overcomes
the effects of calpain inhibition on adhesion and
stress fiber formation [27]. In addition, recent work
has proposed a model by which calpain activates Rac
(presumably indirectly) very early in spreading cells,
producing small integrin-containing adhesions that
contain calpain-cleavage products of talin, spectrin
and B3 integrin. Calpain might activate Rac in these
adhesions, triggering a cascade of spreading events
{17]. This fits well with studies showing that calpain
is required for lamellipodial extension and filopodia
formation as these processes also have been
associated with the Rho GTPases. Calpastatin
overexpression in NTH3T3 fibroblast cells inhibits
calpain activity, functionally blocking cell spreading;
and these cells lack lamellipodia and motility.
However, unlike the situation in bovine aortic
endothelial cells, these cells have large numbers of
stress fibers, abnormal filopodia and abnormal
retraction fibers [30]. Interestingly, these cellshad
higher levels of intact ezrin, a f-actin-binding protein
involved in cytoskeletal reorganization [31]. Calpains
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Fig. 3. Model of differential calpain isoform activation in a migrating cell. p-Calpain acts at the cell
front, activated by integrin signaling and/or mechanically transduced signals that activate
stretch-activated Ca2tchannels. p-Calpain then cleaves its target proteins, including talin, ezrin, focal
adhesion kinase (FAK) and the cytoplasmic tail of B1 and 83 integrins, tofacilitate adhesion
turnover and formation (see Table 1). During haptokinesis, p-calpain might also act at the

rear, triggered by mechanical signals {34,35]. Atthe cell rear, M-calpain is activated by
growth-factor-receptor signaling (i.e. by the EGFR) at the cell membrane, and M-calpain is
potentially retained at the membrane by phospholipid binding {40,42]. M-calpain acts on its
targets to disruptthe intracellular face of the adhesion, allowing release of the integrins and the
appearance of a trail of integrin patches behind the cell. Counter-regulatory signals, such as the
protein kinase A-mediated signal from the chemokine IP-10, act to downregulate M-calpainand

prevent cell migration [(41].

cleave the cytosolic tail of ezrin, and this suggests
that, in spreading cells, calpain might prevent ezrin
from binding to actin and thus allow cytoskeletal
reorganization [30].

Adhesion-related rear detachment during motility
That calpain-mediated regulation of cell-substratum
adhesion should be crucial not only during spreading
and forward protrusion but also during rear release
(which enables a cell to productively move from its
initial site) is not immediately obvious [32,33].
However, in light of the apparent ability of calpain to
functionally affect many adhesion proteins by limited
cleavage, it is not unreasonable to propose that
calpain is not strictly involved in adhesion formation
but functions to increase adhesion turnover, with
cellular conditions dictating whether this would have
an adhesive or releasing consequence. Indeed,
concurrent with the above studies on cell spreading,
haptokinetic motility — motility that occurs when cells
are plated on an activating substrate and mediated
primarily by integrins —was shown to be calpain
dependent. Migration on fibronectin of CHO cells
transfected with both 1 and B3 integrins was
sensitive to calpain inhibition by calpain inhibitor
(CD)-1, CI-2 and BDK (benzyloxycarbonyl-Leu-Leu-
Tyr diazomethyl ketone) [34]. Calpain inhibition
stabilized peripheral focal adhesions, increased
adhesiveness and decreased the detachment rate;
again contrary to expectations derived from
cell-spreading studies. However, if the effect of
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calpain was to alter adhesion to substratum, one
would predict a varied effect dependent on substrate
density. The reduction in motility was dependent on
substrate concentrations, with cells migrating on
lower levels of substrate less sensitive to calpain
inhibition. High substrate concentrations, where
the cell is more tightly adherent, increased the
sensitivity to calpain inhibition [35]; non-motile cells
were quite extended, with long tail processes.
Together with the decrease in detachment rate,

this suggests that calpain is required for rear
detachment during haptokinetic motility. Calpain
modulated cell motility in a manner dependent on
adhesive strength, which was identical to alterations
inintegrin affinity for fibronectin [36]. This might
indicate that calpain is acting as a physiologic
‘theostat’for adhesion control. It is interesting to note
that the activation of calpain mediated by fibrinogen
binding to the olIbB3 integrin transfected into the
CHO cells might have paralleled the more normal
physiological activation by the same integrin in
platelets noted earlier.

During motility, cells must both form new
adhesions at the leading edge (similar to cell
spreading) and also dissolve adhesions at the cell rear
to allow forward movement. When one considers the
studies described above as a whole, an apparent
conflict exists: how does calpain regulate both
adhesion formation and disruption within the same
cell? Calpains, having been implicated in both
adhesion formation (cell spreading) and adhesion
disruption (rear release), must therefore be
regulated differentially in a front-versus-rear fashion.
This asymmetry of action might be mediated through
asymmetric localization of calpain isoforms,
spatial and/or temporal asymmetry of activation
mechanisms (see below) or asymmetrical localization
or distribution of targets. At the very least, it seems
likely that calpain functions to regulate adhesion
turnover, rather than specifically to generate or
breakdown adhesions.

Exactly how calpain is regulated during
haptokinesis remains unknown, but a rough model is
emerging. In the above experiments, Huttenlocher
and colleagues [34] found that cell variants that
expressed low levels of t-calpain behaved identically
to those exposed to inhibitors, despite having a larger
proportion of M-calpain, suggesting an isoform-
specific activating mechanism. Interestingly,
movement of cells on higher fibronectin densities
requires myosin light chain kinase-dependent
contraction [37], and increases inintracellular
Ca?*levels are seen in highly stretched and
contracting cells during fibroblastoid movement [38].
Neither of these studies implicated calpain
activity, but it is plausible that such mechanical
stretching of the membrane might lead to
activation of stretch-activated Ca2*channels, which
would contribute to the activating mechanism of
p-calpain action.
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Growth-factor-induced cell de-adhesion
The apparent sufficiency of the p-calpain isoform for
cell spreading and integrin-mediated adhesion and
migration raises a question regarding the role of the
M isoform, especially as all studies suggest that they
have the same apparent substrate specificity. One
simple explanation, of course, is that this would
represent merely a safeguarding redundancy.
However, a growing body of evidence indicates that
the answer is likely to be more complex. Growth
factors, such as epidermal growth factor (EGF) and
platelet-derived growth factor (PDGF) stimulate
motility by mechanisms imposed upon the underlying
haptokinesis [33]. We found chemokinesis
(i.e. growth-factor-mediated motility) also requires
de-adhesion [39], dependent on calpain, as inhibition
with either calpeptin or CI-1 blocks EGF-induced
de-adhesion and cell migration [40]. Interestingly,
this de-adhesion and motility occurs through
extracellular regulated kinase (ERK/MAP kinase)
phosphorylation and activation of M- but not p-
calpain, in the absence of a Ca?* flux [40] (A. Glading,
1.J. Reynolds, H. Shiraha and A. Wells, unpublished).
The site of phosphorylation appears to be Ser50, which
is absent in p-calpain. This provides a rationale for
the evolutionary duplication of the ubiquitous
isoforms, to enable identical biophysical processes to
be accomplished by disparate signals that converge
only at the final point of adhesion disassembly (Fig. 3).
Both EGF receptor (EGFR) signaling and EGFR
activation of ERK occur throughout the cell, with ERK
phosphorylating targets in both the cytosol and the
nucleus. As this pathway activates M-calpain, the
question then arises as to how M-calpain activity is
targeted to the relevant intracellular locations.
Inhibition of M-calpain causes cells to adopt an
extended morphology, with long, elongated tails [41].
This suggests that, as was shown for integrin-mediated
motility above, growth-factor-mediated M-calpain
activation is required for tail detachment. Therefore,
M-calpain activation needs to be asymmetric to enable
progressive locomotion and not trigger front
detachment or cell responses other than motility. We
have found that EGF induces calpain activity only
when both the EGFR and ERK are associated with the
plasma membrane [42]. This would put active
M-calpain in proximity to the cell membrane and
putative targets in the adhesion complex. Intriguingly,
we have found that phosphatidylinositol (4,5)-
bisphosphate [PtdIns(4,5)P,]is depleted in the
lamellipodia during active motility (. Chou and
A. Wells, unpublished), confirming the rapid inositol
trisphosphate turnover seen to reinforce chemotactic
gradients [43]. This presents a model in which
M-calpain is targeted to the cell membrane through
localization of EGFR and ERK signaling, where it
might bind to PtdIns(4,5)P,. The observed asymmetry
of phospholipids would provide for spatially targeted
calpain proteolysis away from the front and towards
the rear — the locale targeted for de-adhesion.
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Physiological and pathological roles

Calpain performs vital operations in cell motility both
by labilizing cell-substratum adhesions to allow
forward extension and rear release, and by possibly
acting as a positive signal to modulate functioning of
the Rho GTPases. The utility of targeting calpain and
its modulatory pathways depends on how these are
integrated in the development and homeostasis of
organisms. As the prominence of calpain-mediated
adhesion modulation varies with substratum
composition [85}, it is not @ priori evident that

these would be productive manipulations. If, however,
the functions of calpain are or can be restricted

in vivo, it could become an exciting new target for
pharmacological agents.

M-calpain as a target during wound repair
Growth-factor-induced cell motility is considered
crucial for organogenesis, and especially so for
regenerative wound repair. We have identified
calpain as a potentially crucial target to limit
fibroplasia late in the regenerative phase of skin
repair [41]. Two angiostatic chemokines of the CXC
family — interferon-y-inducible protein-10 (IP-10) and
IP-9 - are produced from the neovasculature and
redifferentiated keratinocytes, respectively. Acting
through their common receptor, CXCR3, they trigger
protein kinase A phosphorylation of Ser369/Thr370 in
M-calpain to prevent growth-factor-induced calpain
activity and motility in dermal fibroblasts (H. Shiraha,
A. Glading, Z. Jia, J. Chou and A. Wells, unpublished).

In mesenchymally transitioned keratinocytes that
require active migration to re-epithelialize the
wound, however, IP-9 and IP-10 appear to promote
motility (L. Satish, A. Glading, H. Shiraha, D. Yager
and A. Wells, unpublished). Preliminary observations
suggest that this is probably accomplished through
an IP3-initiated Ca?* flux, activating p-calpain in
these cells. How opposite outcomes are actuated by
the same receptor upon the two isoforms is unknown;
however, it probably involves differential utilization
of heterotrimeric G protein isoforms that couple to
adenylate cyclase (inhibition of M-calpain) or
phospholipase-Cf (activation of p-calpain). Thus, the
different calpain isoforms seem to function as
divergently regulated rate-limiting molecules to
effect cell motility in opposing fashions dependent on
cell type.

Interestingly, blocking de-adhesion can be
considered a ‘gain of function’rather than an
inhibitory action in some circumstances. During the
late resolving phase of wound repair, fibroblasts
switch from reconstitution to reorganization, a
process that includes contraction of the dermal
matrix. Inhibiting calpain-mediated de-adhesion is
proposed to channel the growth-factor-induced
fibroblasts to cause contraction of a collagen lattice. It
could do this by efficiently transferring to the matrix
the intracellular contractile force necessary to detach
the tail and move the cell body forward during
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motility [73]. In such a setting, calpain operates as a
molecular switch between two alternative cell
functions, highlighting the central signaling role of
these molecules.

Other integrative roles

Calpain activity appears central to adhesion and
movement of cells of the immune response [28,29].
Thus, many have speculated that calpain could be
targeted to modulate the immune response. However,
this has yet to be directly addressed either in in vivo
or in vitro networks, as with wound repair, above. One
might focus on the initial stages of adhesive
recognition of inflammatory sites and subsequent
spreading to give access to the interstitial space [44].
The possible involvement of calpain-mediated
de-adhesion in further motility is open to question as
such cells appear to use reversible detachment
mechanisms, operating at much lower adhesion
regimens, although the recycling of integrins requires
Ca?* transients [45].

Calpain-mediated motility processes might also be
productively targeted to limit tumor spread. Active
cell movement is required by tumor cells during both
invasion and metastasis and by endothelial cells
during reactive angiogenesis [46,47]. Further
investigations to delineate whether calpain-mediated
attachment and motility are rate limiting in tumor
progression and immune responses might add
additional targets to our therapeutic arsenal.

Future considerations

Progress in understanding calpain function should
accelerate swiftly in the next few years as
investigators integrate the detailed biochemical and
structural information with emerging cell-biological,
organismal and proteomic capabilities. For instance,
the current evidence for spatial control of calpain
function during EGF-induced motility is only a
first-level crude analysis. New imaging methods
could shed light on molecular spacing and
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subdomains within seemingly homogenous locales
(e.g. front—rear asymmetry and molecular positioning
within adhesion complexes). In addition, the temporal
nature of calpain activation and functioning could

be appreciated by live-cell imaging, using
proteolytically activated reporters. This might be
controlled, in part, during productive migration, at
the transcriptional level (of which precious little is
known with respect to motility — except for the
observation that there appears to be a compensatory
upregulation of protein production in response to
growth-factor-induced turnover [40]). Proteomics
holds the promise of defining physiologically relevant
calpain targets for calpain activity in cell adhesion
and motility.

Placing calpain function in physiological and
pathological contexts requires analyses in tissue
systems and animal models. Ex vivo organ systems
are still in their infancy but should see quantifiable
advances in the next few years [48]. These situations
would enable coupling of directed manipulations to
real-time imaging capabilities.

Model animal systems are being established, but
certain limitations need to be overcome. Genetic
ablation of the common small subunit, eliminating the
ubiquitous calpains, results in lethality in early- to mid-
gestation [49]. Cell proliferation in rescued fibroblasts
is relatively unaffected, although cell adhesion and
motility appear impaired (A. Huttenlocher, pers.
commun.). Still, temporal and tissue-specific ablation of
calpain and of individual isoforms is required to tease
out individual physiological roles.

These exciting findings will need to be integrated
with other aspects of cell motility and adhesion, and
with other regulators of such processes —and also
with the various other roles of calpains. Only then
will we be able to derive testable models that should
uncover new biological principles, such as
the emerging idea of limited proteolysis as a
signal-transduction process, and also define new
targets for interventions and bioengineering.
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